greenmarket.su

Синтез холестерола биохимия

Формула и процесс биосинтеза холестерина

Холестерин – это жизненно необходимое соединение для организма. Он является субстратом для гормона прогестерона, эстрогена, тестостерона, гормонов надпочечников (альдостерона, кортизола), участвует в одном из направлений метаболизма витамина Д, а также используется для построения мембран и клеточных стенок.

Холестерол, с точки зрения биохимии, — это органический липофильный спирт, который не растворяется в воде. Рассмотрим, чем характерна химическая формула холестерина и какие особенности и стадии выделяют в процессе его биосинтеза.

Формула и строение холестерина

Холестерин относится к группе стероидов. Является одним из главных стероидов в макроорганизме человека, определяет активность обмена липидов. По своей структуре это твердое кристаллическое бесцветное вещество, не растворяющееся в воде. Лабораторной единицей измерения в периферической крови является ммоль/л.

Химическая формула (она же брутто-формула) холестерина — C27H46O.

Молекулярная масса — около 387 г/моль.

Структурная форма выглядит следующим образом:

Одна из основных особенностей молекулы холестерола – способность связываться с другими соединениями, образовывая комплексы молекул. Такими соединениями могут быть кислоты, амины, протеины, холекальциферол (предшественник витамина Д3), соли и прочие. Данное свойство обусловлено характерным строением молекулы холестерола и его высокой активностью в процессах биохимии.

Биосинтез холестерина

Весь холестерин в человеческом макроорганизме подразделяется на экзогенный и эндогенный. Экзогенный составляет около 20% от общего показателя и поступает в организм с продуктами питания. Эндогенный холестерол синтезируется непосредственно в организме. Его производство синхронно происходит в двух локализациях. В кишечнике специфическими клетками энтероцитами формируется около 15% вещества, а порядка 50% эндогенного холестерина вырабатывается в печени, где в дальнейшем связывается с белками, образует комплексы в виде липопротеидов и выходит в периферический кровоток. Небольшая часть также отправляется на синтез триглицеридов – эфиров жирных кислот и глицерина, которые соединяются с холестеролом.

Синтез холестерола – сложный и энергозатратный процесс. Необходимо больше 30 последовательных реакций липидной трансформации, чтобы в результате образовалась холестериновая молекула. Схематически, все эти превращения можно сгруппировать в шесть стадий процесса синтеза холестерола.

  1. Биосинтез мевалоната. Состоит из трех реакций. Первые две из них являются реакциями кетогенеза, а третью реакцию катализирует фермент ГМГ-SКоА редуктаза, под действие которой образуется первый предшественник холестерина – мевалоновая кислота. Механизм действия большинства гиполипидемических препаратов, в особенности статинов, направлен именно на это звено биосинтеза. Путем воздействие на ферментативную активность редуктаз, можно частично управлять холестериновой трансформацией.
  2. Биосинтез изопентенилпирофосфата. Три фосфатных остатка присоединяются к полученной мевалоновой кислоте. После этого она проходит процессы декарбоксилирования и дегидрирования.
  3. На третьем этапе происходит слияние трех изопентенилпирофосфатов, которые превращаются в фарнезилдифосфат.
  4. Из 2-х остатков фарнезилдифосфата образуется новая молекула – сквален.
  5. Линейный сквален проходит ряд реакций циклизации и трансформируется в ланостерол.
  6. От ланостерина отщепляются избыточные метильные группы, соединение проходит ступень изомеризации и восстановления, в результате которых образуется молекула холестерина.

Кроме активного фермента ГМГ-КоА редуктазы, в реакциях биосинтеза принимают участие инсулин, глюкагон, адреналин и специальный белок-переносчик, который связывает метаболиты на разных этапах.

Эфиры холестерола

Эстерификация холестерина – это процесс связывания с ним жирных кислот. Запускается он либо для переноса молекулы холестерола, либо для трансформации его в активную форму.

В данных превращениях важную роль играет лецитин – он присоединяется к молекуле холестерина и под действием фермента лецитин-холестерол-ацил-трансферазы образует эфиры лизолейцин и холестерид. Таким образом, реакция эстерификации – это процесс, направленный на снижение количество свободного холестерола в кровотоке. Полученные эфиры тропны к «хорошим» липопротеидов высокой плотности и легко к ним присоединяются. Образование эфиров холестерина – часть защитного антиатеросклеротического механизма.

Холестерин – очень важное для макроорганизма соединение, которое принимает не только участие в обмене липидов, но и в процессах транcформации биологически активных веществ и синтезе мембран клеток. Молекула данного вещества проходит сложный цикл превращений из более чем 30 реакций, которые регулируются и контролируются ферментативной и гуморальной системами.

Изменения в одном из звеньев биосинтеза может стать индикатором патологии со стороны внутренних органов и систем – печени, щитовидной и поджелудочной желез. Следует проводить профилактические обследования и скрининговые липидограммы, чтобы вовремя выявить патологический процесс.

5 циклов синтеза холестерола — от чего зависит и почему нарушается процесс холестеринового обмена?

Постоянный синтез холестерина в организме обеспечивает работа печени. Но, кроме этого, источником соединение выступает кишечник, где обрабатывается и синтезируется липид. Реакция также происходит в коже человека. Важная роль холестерина и его функции значительна. Он позволяет вырабатывать витамин Д и гормоны. Но избыток приводит к накоплению холестерола, что опасно для работы сердца.

Общая характеристика

Холестерин получил название в 1769 году от французского химика Пулетье де ла Саль. Первоначально слово обозначало выработку вещества, которую выделяли желчные камни. В буквальном смысле его стоит переводить как «твердая желчь». Но со временем ученые доказали, что вещество — это природный спирт, поэтому корректнее его называть холестерол. Экзогенный холестерин необходим организму для выработки витамина Д, он обеспечивает энтерогепатический оборот желчных кислот, для создания клеточных мембран и транспортировки эйкозаноидов. Схема создания липида сложная и включает несколько этапов.

Читать еще:  Сыпь под глазами у ребенка

Где синтезируется?

Синтез холестерина происходит в таких частях тела:

Биосинтез холестерина — один из важнейших процессов, который происходит в теле человека. Большую часть (выше 50%) экзогенного холестерина синтезирует печень, потому что это регуляторный источник цитозоли и эндоплазматического ретикулюма. В этом же органе начинается производство гликогена. Ресинтез происходит в кишечнике: жирные кислоты соединяются со спиртами и поступают в кровь, что позволяют уменьшить их дегенеративное влияние на мембраны. Активность выработки зависит от наличия в организме сериодов, витамина D и некоторых соединений, которые отвечают за транспортировку веществ. Основные этапы метаболизма и пути использования — это производство мевалоновой кислоты, изопентенилпирофосфата, сквалена, ланостерина, холестерина.

Цикл создания

Особенности обмена холестерина в организме человека заключаются в сложности его создания. Последовательность всегда строго одинакова. В этом процессе участвуют ферменты, которые проходят несколько биохимических действий. Нарушение цикла грозит недостатком или избытком липида, что приводит к серьезным заболеваниям.

Синтез мевалоновой кислоты

Обмен холестерина начинается с создания этого соединения с помощью ГМГ-КоА-редуктаза. На первом этапе ключевой фермент ацетил-CoA-ацетилтрасфераза при слиянии двух молекул влияет на производство коэнзима А. В этом процессе превращения также участвует гидроксиметил, который позволяет из ацетила и ацетоацетила получить 3-гидрокси-3-метилглутарил-CoA. После от этого соединения отходит кофермент А, чье молекулярная формула выглядит как HS-CoA. Это приводит к синтезу мевалоната.

Производство изопентенилпирофосфата

На этой стадии синтез протекает в 4 реакции. Сначала мевалонат вместе с мевалоткиназом путем фосфорилирования становится 5-фосфомевалонатом. Затем на второй операции в обмене веществ участвует формула фосфомевалоната, которая превращается в 5-пирофосфомевалонат. После на него влияет гормон кеназ, что позволяет синтезировать 3-фосфо-5-пирофосфомевалонатом. На последнем этапе происходит декарбоксирование и дефосфорилирование, в результате чего синтезируются изопентинилпирофосфат.

Выработка сквалена

Это коротки этап в формировании спирта. Регуляторным ферментов является гидроксиметилглутарил. Скваленовый путь начинается с того, что на выработанный фермент путем изомеризации влияет диметилаллилпирофосфат. После синтез липидов обеспечивает появление электрной свези между ферментами, что приводит к конденсированию и производству геранилпирофосфата. Но при этом от связи отходит часть пирофосфата, которая появилась при биосинтезе холестерина на втором этапе.

Производство ланостерина

На этом этапе образование эфиров в печени С5 изопентенилпирофосфата соединяется с 10 геранилпирофосфата. Затем происходит конденсация и образуется фарнезилпирофосфат. От него отходит часть, которая называется пирофосфата. На последней стадии этого этапа две молекулы фарнезилпирофосфатных соеднияются и конденсируются, что создает скавален, через распад пирофосфата в клетки.

Синтез липида

Это ключевой и завершающий момент, в котором процесс включает 5 реакций. Метаболизм холестерина начинается с окисления с участием С14 ланостерина. В результате это активирует производство14-десметилланостерина. Из соединения выпадают две С4 и органелла становится зимостеролом. Следующая операция приводит к образованию δ-7,24- холестадиенола. Затем меняются двойные связи и образуется демостерол. На последнем этапе восстанавливается взаимодействие и появляется сам холестерин.

От чего зависит?

По подсчетам ученых, в день производится от 0,5 до 0,8 грамм холестерола.

Цикл создания эндогенного соединения и обмен эфиров осуществляется при помощи приблизительно 30 реакций. Основные клетки, которые участвуют в этом действии — гепатоциты печени, в которых содержится ретикулин. Эта молекула является группой жиров и углеводов. Холестерин должен контролироваться, так как избыток или недостаток приводит к серьезным заболеваниям. Биохимия и синтез холестерола зависит от микрофлоры организма, в том числе кишечника. Этот орган влияет на всасывание жиров, образования эфиров и трансформации стиролов. Большую роль играет уровень фосфолипидов, которые транспортируют жиры. Важно поддерживать их количество, так как это контролирует содержание холестерола в крови.

Нарушения обмена холестерина

Избыток холестерина

Из-за недостатка физической активности, некачественного питания и переедания появляются проблемы с накоплением пищевого холестерина. Такое нарушение появляется у людей, имеющим вредные привычки. Из-за этого на сосудах начинают скапливаться холестериновые бляшки, которые мешают циркуляции крови. В результате развиваются заболевания сердца.

Нарушение холестеринового обмена происходит из-за таких болезней:

  • желчные нарушения;
  • патологии печени и почек;
  • эндокринные заболевания.

Вернуться к оглавлению

Недостаток метаболитов

Регуляция синтеза холестерина происходит благодаря питанию и спорту. Высокая активность (занятие спортом, танцами) сильно влияет на биосинтез холестерола. Если при этом человек не употребляет алкоголь и не курит, то у него активно снижается количество природного спирта в тканях организма. Врачи рекомендуют для уменьшения уровня молекул соблюдать правильную диету, в которой превалирует углеводная пища. Синтез подавляется также при помощи лекарств. Но люди, у которых нарушен процесс синтеза, страдают от проблем с давлением и рискуют получить сердечный приступ.

БИОСИНТЕЗ ХОЛЕСТЕРИНА

В 40-60-х годах нашего столетия К. Блох и сотр. в опытах с использованием ацетата, меченного 14 С по метильной и карбоксильной группам, показали, что оба атома углерода уксусной кислоты включаются в холестерин печени приблизительно в одинаковых количествах. Кроме того, было доказано, что все атомы углерода холестерина происходят из ацетата.

Читать еще:  Как правильно сдавать пролактин

В дальнейшем благодаря работам Ф. Линена, Г. Попьяка, Дж. Корн-форта, А.Н. Климова и других исследователей были выяснены основные детали ферментативного синтеза холестерина, насчитывающего более 35 энзиматических реакций. В синтезе холестерина можно выделить три основные стадии: I – превращение активного ацетата в мевалоновую кислоту, II – образование сквалена из мевалоновой кислоты, III – циклизация сквалена в холестерин.

Рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции:

Затем при последующей конденсации ацетоацетил-КоА с 3-й молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтаза) образуется β-гидрокси-β-метилглутарил-КоА:

Далее β-гидрокси-β-метилглутарил-КоА под действием регуляторного фермента НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту:

ГМГ-КоА-редуктазная реакция – первая практически необратимая реакция в цепи биосинтеза холестерина. Она протекает со значительной потерей свободной энергии (около 33,6 кДж). Установлено, что данная реакция лимитирует скорость биосинтеза холестерина.

Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата, по-видимому, образуется не β-гидрокси-β-метилглутарил-КоА, а β-гидрокси-β-метилглутарил-S-АПБ. Реакции этого пути идентичны начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза – фермент, осуществляющий превращение ацетил-КоА в малонил-КоА. Оптимальное соотношение малонил-КоА и ацетил-КоА для синтеза мевалоновой кислоты – 2 молекулы ацетил-КоА на 1 молекулу малонил-КоА.

Участие малонил-КоА – основного субстрата биосинтеза жирных кислот в образовании мевалоновой кислоты и различных полиизопреноидов показано для ряда биологических объектов: печени голубя и крысы, молочной железы кролика, бесклеточных дрожжевых экстрактов. Этот путь биосинтеза мевалоновой кислоты отмечен преимущественно в цитозоле клеток печени. Существенную роль в образовании мевалоната в данном случае играет ГМГ-КоА-редуктаза, обнаруженная в растворимой фракции печени крысы и неидентичная микросомному ферменту по ряду кинетических и регуляторных свойств. Регуляция второго пути биосинтеза мевалоновой кислоты при ряде воздействий (голодание, кормление холестерином, введение поверхностно-активного вещества тритона WR-1339) отличается от регуляции первого пути, в котором принимает участие микросомная редуктаза. Эти данные свидетельствуют о существовании двух автономных систем биосинтеза мевалоновой кислоты. Физиологическая роль второго пути окончательно не изучена. Полагают, что он имеет определенное значение не только для синтеза веществ нестероидной природы, таких, как боковая цепь убихинона и уникального основания N 6 -(Δ 2 -изопентил)-аденозина некоторых тРНК, но и для биосинтеза стероидов (А.Н. Климов, Э.Д. Полякова).

На II стадии синтеза холестерина мевалоновая кислота превращается в сквален. Реакции II стадии начинаются с фосфорилирования мевалоновой кислоты с помощью АТФ. В результате образуется 5-фосфорный эфир, а затем 5-пирофосфорный эфир мевалоновой кислоты:

5-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт – 3-фосфо-5-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя остаток фосфорной кислоты, превращается в изопентенилпирофосфат. Последний изомеризуется в диметилаллилпирофосфат:

Затем оба изомерных изопентенилпирофосфата (диметилаллилпирофос-фат и изопентенилпирофосфат) конденсируются с высвобождением пи-рофосфата и образованием геранилпирофосфата:

К геранилпирофосфату вновь присоединяется изопентенилпирофосфат. В результате этой реакции образуется фарнезилпирофосфат:

В заключительной реакции данной стадии в результате НАДФН-за-висимой восстановительной конденсации 2 молекул фарнезилпирофосфата образуется сквален:

На III стадии биосинтеза холестерина сквален под влиянием сквален-оксидоциклазы циклизируется с образованием ланостерина. Дальнейший процесс превращения ланостерина в холестерин включает ряд реакций, сопровождающихся удалением трех метильных групп, насыщением двойной связи в боковой цепи и перемещением двойной связи в кольце В из положения 8, 9 в положение 5, 6 (детально эти последние реакции еще не изучены):

Приводим общую схему синтеза холестерина:

Начиная со сквалена, все промежуточные продукты биосинтеза холестерина (включая и холестерин) нерастворимы в водной среде. Поэтому они участвуют в конечных реакциях биосинтеза холестерина, будучи связанными со стеринпереносящими белками (СПБ). Это обеспечивает их растворимость в цитозоле клетки и протекание соответствующих реакций. Данный факт имеет важное значение и для вхождения холестерина в клеточные мембраны, окисления в желчные кислоты, превращения в стероидные гормоны. Как отмечалось, реакцией, регулирующей скорость биосинтеза холестерина в целом, является восстановление β-гидрокси-β-метилглутарил-КоА в мевалоновую кислоту, катализируемое ГМГ-КоА-редуктазой. Данный фермент испытывает регуляторное воздействие ряда

факторов. В частности, скорость синтеза редуктазы в печени подвержена четким суточным колебаниям: максимум ее приходится на полночь, а минимум – на утренние часы.

Активность ГМГ-редуктазы возрастает при введении инсулина и тире-оидных гормонов. Это приводит к усилению синтеза холестерина и повышению его уровня в крови.

При голодании, тиреоидэктомии, введение глюкагона и глюкокорти-коидов, напротив, отмечается угнетение синтеза холестерина, что прежде всего связано со снижением активности ГМГ-КоА-редуктазы.

Синтез холестерола биохимия

Приблизительно половина холестерола, имеющегося в организме, образуется путем биосинтеза (около 500 мгсут, а другая половина поступает с пищей. Холестерол синтезируется главным образом в печени (

50% от общего количества образующегося холестерола), кишечнике (

Читать еще:  Неприятный запах мочи у женщин

15%) и коже (большая часть остальной доли).

ПУТЬ БИОСИНТЕЗА

Все клетки, не утратившие ядро, способны синтезировать холестерол. Биосинтез холестерола происходит в микросомах (эндоплазматическом ретикулуме) и цитозоле.

Источником всех атомов углерода, входящих в молекулу холестерола, является ацетил-СоА. Путь биосинтеза сложной молекулы холестерола исследован во многих работах, и в настоящее время получены результаты, на основании которых установлено происхождение всех фрагментов молекулы холестерола (рис. 27.1, 27.2 и 27.3). Синтез этого вещества происходит в несколько стадий. 1. Мевалонат, в состав молекулы которого входит 6 атомов углерода, синтезируется из При отщеплении от мевалоната образуется изопреноидная единица (рис. 27.2). 3. Шесть изопреноидных единиц конденсируются с образованием промежуточного соединения сквалена. 4. Сквален циклизуе-тся, образуя исходный стероид ланостерол. 5. Путем дальнейших превращений, включающих удаление трех метильных групп, ланостерол превращается в холестерол. (рис. 27.3).

1. Образование мевалоната через ГМГ-СоА (3-гидрокси-3-метилглутарил-СоА) протекает в цитозоле в результате такой же последовательности реакций, как и для биосинтеза кетоновых тел в митохондриях (гл. 28).

На первом этапе синтеза холестерола две молекулы ацетил-СоА конденсируются под действием тозольного фермента тиолазы с образованием ацетоацетил-СоА. В альтернативном случае ацетоацетат, образовавшийся в митохондриях печени по пуп кетогенеза (см. гл. 28), диффундирует в цитозоль, где превращается в активное производнос

Рис. 27.1. Биосинтез мевалоната. ГМГ – 3-гидрокси-3-метнлглутарат. ГМГ-СоА-редуктаза ингибируется холестеролом, а тикжс метаболитами грибов компакти-ном и мсвинолином, которые конкурируют с ГМГ-СоА.

ацетоацетил-СоА (реакция катализируется цетоацетил-СоА-синтазой при участии СоА и АТР). Другой фермент, ГМГ-СоА-синтаза, катализирует конденсацию ацетоацетил-СоА с ацетил-СоА с образованием ГМГ-СоА.

Затем ГМГ-СоА превращается в мевалонат путем двухступенчатого восстановления за счет NADPH, катализируемого микросомальным ферментом ГМГ-СоА-редуктазой. Предполагается, что эта реакция является скорость – лимитирующей стадией на пути синтеза холестерола (рис. 27.1).

2. Мевалонат фосфорилируется АТР с образованием ряда активных фосфорилированных интермедиатов (рис. 27.2). Образовавшийся 3-фосфо-5-пирофосфомевалонат декарбоксилируется, в результате образуется изопентилпирофосфат — активная изопреноидная единица.

3. На следующем этапе происходит конденсация трех молекул изопентенилпирофосфата с образованием фарнезилпирофосфата. Процесс начинается с изомеризации изопентилпирофосфата (путем перемещения двойной связи) в диметилаллилпирофосфат.

Последний конденсируется с другой молекулой изопентенилпирофосфата с образованием десятиуглеродного интермедиата геранилпирофосфата (рис. 27.2), который затем конденсируется с еще одной молекулой изопентенилпирофосфата; в результате образуется фарнезилпирофосфат. Две молекулы фарнезилпирофосфата конденсируются концами, несущими пирофосфатные группы: сначала отщепляется одна пирофосфатная группа и образуется промежуточное соединение прескваленпирофосфат, которое затем восстанавливается NADPH с элиминированием оставшейся пирофосфатной группы и превращается в сквален. Следует отметить, что может функционировать побочный путь, который называют «траке-метилглутаконатный щунт». По этому пути значительная доля (20%) диметилаллилпирофосфата превращается в ГМ Г-СоА (через транс-). По-видимому. данный путь может участвовать в регуляции скорости синтеза холестерола.

4. Сквален имеет структуру, подобную стероидному ядру (рис. 27.3). Перед стадией циклизации сквален превращается в эндоплазматическом ретикулуме в 2,3-оксид сквалена под действием скваленэпок-сидазы, которая относится к оксидазам со смешанной функцией. При циклизации, катализируемой -сндосквален—ланостерол-циклазой, метальная группа у С ,4 переносится на а метильная группа у С — на

5. На последнем этапе (рис. 27.3) ланостерол превращается в мембранах эндоплазматического ретикулума в холестерол, при этом происходят изменения в стероидном ядре и боковой цепи. Метильная группа при окисляется до и образуется -десметилланстерол. Подобным же образом удаляются еще две метильные группы при и образуется зимостерол. Далее путем перемещения двойной связи между в положение между образуется Д7-24-холестадиенол. В результате дальнейшего перемещения двойной связи в кольце В в положение между характерное для молекулы холестерола, образуется десмостерол, и наконец, в результате восстановления двойной связи в боковой цепи образуется холестерол. Восстановление двойной связи в боковой цепи может, однако, происходить и на предшествующих стадиях биосинтеза холестерола. Следует отметить, что до настоящего времени еще нет точных данных о последовательности некоторых описанных выше превращений.

Предполагают, что промежуточные продукты на стадиях превращения сквалена в холестерол связываются специальным сквален- и стеролпереносящим белком. Этот белок связывает стеролы и другие нерастворимые липиды, обеспечивая им возможность участия в реакциях, протекающих в водной фазе клетки. Весьма вероятно, что холестерол превращается в стероидные гормоны и желчные кислоты, а также

Рис. 27.2. Биосинтез сквалена, убихинона и долихола. ГМГ — 3-гидрокси-3-метилглутарат. Фарнезильный остаток входит в состав тема цитохромоксидазы. Атом углерода, помеченный звездочкой, занимает положение См или в молекуае сквалена. Скваленсинтетаза является микросомальным ферментом, все остальные ферменты — растворимые белки цитоплазмы. Цитокинины представлены изопентениладенином — компонентом тРНК.

Рис. 27.3. Биосинтез холестерола. Атомы углерода пронумерованы, как в стероидном ядре. Звездочкой обозначены метки в сквалене, указанные на рис. 27.2.

участвует в образовании мембран и липопротеинов, будучи связанным с холестеролпереносящим белком.

Синтез других изопреноидных соединений

Фарнезилпирофосфат является предшественником других полиизопреноидов—долихола и убихинона. Полиизопренильный спирт долихол образуется путем присоединения еще 16 остатков изопентенилпирофосфата, а боковая цепь убихинона формируется путем присоединения 3—7 изопреноидных единиц.

Ссылка на основную публикацию
Adblock
detector